The crystals were supplied by Dr R. W. M. ten Hoedt, Dr J. G. Noltes and Professor G. van Koten.

The X-ray data were collected by Dr A. J. M. Duisenberg.

References

Cecconi, F., Ghilardi, C. A., Midollini, S. \& Orlandini, A. (1982). J. Chem. Soc. Chem. Commun. pp. 229-230.

Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Davis, P. H., Belford, R. L. \& Paul, I. C. (1973). Inorg. Chem. 12, 213-218.
Hoedt, R. W. M. ten (1979). Thesis, Univ. of Utrecht.

Hoedt, R. W. M. ten, van Koten, G. \& Noltes, J. G. (1979). J. Organomet. Chem. 179, 227-240.
International Tables for X-ray Crystallography (1968). Vol. III, p. 260. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Noltes, J. G., ten Hoedt, R. W. M., van Koten, G., Spek, A. L. \& Schoone, J. C. (1982). J. Organomet. Chem. 225, 365-376.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1984). SHELX84. Program for crystal structure determination. Univ. of Göttingen, Federal Republic of Germany.
SPEK, A. L. (1982). The EUCLID package. In Computational Crystallography, edited by D. Sayre, p. 528. Oxford: Clarendon Press.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A 39, 158-166.
Westmijee, H., Kleijn, H., Mejer, J. \& Vermeer, P. (1977). Tetrahedron Lett. pp. 869-872.

Acta Cryst. (1987). C43, 873-875

Structure of Bis[(18-crown-6)ammonium]* Aquadioxotetrathiocyanatouranate

By Wang Ming and Zheng Pei-Ju
Center of Analysis and Measurement, Fudan University, Shanghai, People's Republic of China
and Zhang Jing-Zhi, Chen Zhong, Shen Jin-Ming and Yang Yong-Hui
Department of Chemistry, Shandong University, Jinan, Shandong, People's Republic of China

(Received 21 October 1986; accepted 15 December 1986)

Abstract

NH}_{4}\left(\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{6}\right)\right]_{2}\left[\mathrm{UO}_{2}(\mathrm{NCS})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right], \quad M_{r}\) $=1085.09$, orthorhombic, Fdd2, $a=29.927$ (3), b $=34.527$ (3), $c=8.724$ (1) $\AA, V=9014.5 \AA^{3}, Z=8$, $D_{x}=1.599 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71073 \AA, \quad \mu=$ $36.539 \mathrm{~cm}^{-1}, F(000)=4352, T=293 \mathrm{~K}, R=0.042$ for 1877 observed reflections with $F^{2}>3 \sigma\left(F^{2}\right)$. The uranyl group does not enter into the 18 -crown- 6 cavity, but presents the usual pentacoordination in the equatorial plane with four linear NCS^{-}ions and one water molecule. The NH_{4}^{+}cation is anchored in the crown ether ring by hydrogen bonds and ion-dipolar interactions via oxygen atoms of the crown ether.

Introduction. Recently several systems for the extraction of uranium with crown ethers have been studied. It was reported that the extractability of uranium with crown ethers is different in various thiocyanate solutions (Jin \& Xu, 1982). However, little is known about the structures and properties of these complexes. It is also of interest to know how uranium and crown ethers link up when some thiocyanates coexist. We synthesized some complexes and determined their struc-

[^0]tures. As part of these studies we report here the structure of the title compound.

Experimental. Yellow crystal $(0.12 \times 0.18 \times$ 0.24 mm). D_{m} not determined. Enraf-Nonius CAD-4 diffractometer with graphite-monochromated Mo $K \alpha$ radiation. Cell constants refined from 25 reflections $\left(14<\theta<15^{\circ}\right)$. Three standard reflections every $3600 \mathrm{~s}, 2 \theta_{\text {max }}=60^{\circ}, h=0$ to $42, k=0$ to $48, l=0$ to 12. 3684 independent reflections but only 1877 with $F^{2}>3 \sigma\left(F^{2}\right)$ were used in the refinement. Variation of standard reflections $12, \overline{12}, 4, \overline{6} \overline{4} 6$ and $\overline{11}, \overline{1} 7,3, \pm 0 \cdot 7 \%$. Data corrected for Lorentz-polarization but not absorption. Systematic absences, $h k l: h+k, k+l,(h+l)$ $=2 n+1,0 k l: k+l=4 n \pm 1, h 0 l: h+l=4 n \pm 1$. Structure solved by Patterson method, ΔF syntheses. No attempts were made to locate the H atoms. Full-matrix leastsquares refinement with anisotropic temperature factors. 254 variables, $(\Delta / \sigma)_{\text {max }}<0.06, R=0.042$, $w R=0.047$ where $w=1, F^{2}>3 \sigma\left(F^{2}\right) ; w=0, F^{2}<$ $3 \sigma\left(F^{2}\right)$. Correction for isotropic extinction, extinction coefficient $=7.47 \times 10^{-8}$. Max. value in final difference density map was $1.976 \mathrm{e}^{-3} \AA^{-3}$ located near the U atom. Calculation performed on a PDP 11/44 computer © 1987 International Union of Crystallography
with SDP program supplied by Enraf-Nonius (1983). Neutral-atom scattering factors were taken from International Tables for X-ray Crystallography (1974).

Table 1. Atomic coordinates and thermal parameters with e.s.d.'s in parentheses
$B_{\text {eq }}=\frac{4}{3}\left[a^{2} B(1,1)+b^{2} B(2,2)+c^{2} B(3,3)+a b \cos \gamma B(1,2)+\right.$ $a c \cos \beta B(1,3)+b c \cos \alpha B(2,3)]$.

	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
U	0.250	0.250	0.250	3.91 (1)
S(1)	0.2367 (1)	0.3272 (1)	0. 7404 (6)	5.70 (9)
S(2)	0.1424 (2)	0.3608 (1)	0.1928 (6)	6.4 (1)
O(1)	0.2957 (4)	0.2813 (3)	0.250 (2)	6.8 (2)
$\mathrm{O}(2)$	0.250	0.250	-0.036 (2)	6.1 (4)
\bigcirc	0.0717 (3)	0.3332 (3)	0.675 (1)	4.6 (2)
O(4)	0.1050 (3)	0.2601 (3)	0.775 (1)	4.9 (2)
O(s)	0.1195 (3)	0.2022 (3)	0.550 (1)	5.2 (2)
O(6)	0.0670 (3)	0.2026 (3)	0.285 (1)	4.9 (2)
O(7)	0.0349 (3)	0.2751 (3)	0.180 (1)	4.4 (2)
$\mathrm{O}(8)$	0.0211 (3)	0.3331 (3)	0.403 (1)	4.4 (2)
$\mathrm{N}(1)$	0.2235 (5)	0.2856 (4)	0.476 (2)	8.4 (5)
$\mathrm{N}(2)$	0.2035 (5)	0.3020 (4)	0.158 (2)	6.3 (3)
$\mathrm{N}(3)$	0.0997 (4)	0.2784 (3)	0.435 (1)	3.8 (2)
C (1)	0.2301 (6)	0.3030 (4)	0.586 (2)	5.6 (4)
C(2)	0.1780 (5)	0.3265 (4)	0.171 (2)	4.6 (3)
C(3)	0.0734 (6)	0.3211 (5)	0.834 (2)	6.2 (4)
C(4)	0.1129 (5)	0.2958 (5)	0.854 (2)	5.5 (4)
C(5)	0.1426 (5)	0.2345 (5)	0.776 (2)	6.3 (4)
C(6)	0.1315 (5)	0.1960 (5)	0.711 (2)	5.5 (4)
C(7)	0.1049 (5)	0.1667 (4)	0.482 (2)	5.6 (4)
$\mathrm{C}(8)$	0.1010 (5)	0.1738 (4)	0.309 (2)	5.6 (4)
C(9)	0.0643 (6)	0.2117 (4)	0.129 (2)	5.2 (4)
C(10)	0.0242 (5)	0.2393 (4)	0.104 (2)	5.1 (3)
$\mathrm{C}(11)$	-0.0017 (5)	0.3013 (4)	0.174 (2)	4.7 (3)
C(12)	0.0116 (5)	0.3396 (4)	0.243 (2)	5.1 (3)
C(13)	0.0326 (5)	0.3681 (4)	0.474 (2)	4.9 (3)
C(14)	0.0364 (5)	0.3608 (4)	0.646 (2)	5.7 (4)

Table 2. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{U}-\mathrm{O}(1)$	1.743 (3)	O(5)-C(7)	1.426 (6)
$\mathrm{U}-\mathrm{O}(2)$	2.493 (4)	$\mathrm{O}(6)-\mathrm{C}(8)$	1.436 (6)
$\mathrm{U}-\mathrm{N}(1)$	2.452 (5)	$\mathrm{O}(6)-\mathrm{C}(9)$	1.399 (6)
$\mathrm{U}-\mathrm{N}(2)$	2.410 (5)	$\mathrm{O}(7)-\mathrm{C}(10)$	1.436 (5)
$\mathrm{S}(1)-\mathrm{C}(1)$	1.599 (6)	$\mathrm{O}(7)-\mathrm{C}(11)$	1.423 (5)
S(2)-C(2)	1.602 (6)	$\mathrm{O}(8)-\mathrm{C}(12)$	1.442 (6)
$\mathrm{N}(1)-\mathrm{C}(1)$	$1 \cdot 151$ (7)	$\mathrm{O}(8)-\mathrm{C}(13)$	1.399 (5)
$\mathrm{N}(2)-\mathrm{C}(2)$	1.145 (6)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.482 (9)
$\mathrm{O}(3)-\mathrm{C}(3)$	1.457 (6)	$\mathrm{C}(5)-\mathrm{C}(6)$	1.482 (8)
$\mathrm{O}(3)-\mathrm{C}(14)$	1.444 (6)	C(7)-C(8)	1.538 (9)
$\mathrm{O}(4)-\mathrm{C}(4)$	1.433 (6)	$\mathrm{C}(9)-\mathrm{C}(10)$	1.548 (7)
$\mathrm{O}(4)-\mathrm{C}(5)$	1.430 (6)	C(11)-C(12)	1.506 (7)
$\mathrm{O}(5)-\mathrm{C}(6)$	1.464 (6)	$\mathrm{C}(13)-\mathrm{C}(14)$	1.524 (8)
$\mathrm{O}(1)-\mathrm{U}-\mathrm{O}\left(1^{\prime}\right)$	180.00 (0)	$\mathrm{C}(12)-\mathrm{O}(8)-\mathrm{C}(13)$	110.0 (4)
$\mathrm{O}(1)-\mathrm{U}-\mathrm{O}(2)$	89.9 (2)	$\mathrm{U}-\mathrm{N}(1)-\mathrm{C}(1)$	151.2 (6)
$\mathrm{O}(1)-\mathrm{U}-\mathrm{N}(1)$	86.8 (2)	$\mathrm{U}-\mathrm{N}(2)-\mathrm{C}(2)$	154.2 (5)
$\mathrm{O}(1)-\mathrm{U}-\mathrm{N}\left(1^{\prime}\right)$	93.3 (2)	$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{N}(1)$	177.2 (7)
$\mathrm{O}(1)-\mathrm{U}-\mathrm{N}(2)$	89.5 (2)	$\mathrm{S}(2)-\mathrm{C}(2)-\mathrm{N}(2)$	179.3 (6)
$\mathrm{O}(1)-\mathrm{U}-\mathrm{N}\left(2^{\prime}\right)$	90.4 (2)	$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(4)$	108.1 (5)
$\mathrm{O}(2)-\mathrm{U}-\mathrm{N}(1)$	143.4 (1)	$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(3)$	108.6 (5)
$\mathrm{O}(2)-\mathrm{U}-\mathrm{N}(2)$	70.5 (1)	$\mathrm{O}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	112.1 (4)
$\mathrm{N}(1)-\mathrm{U}-\mathrm{N}\left(1^{\prime}\right)$	73.2 (3)	$\mathrm{O}(5)-\mathrm{C}(6)-\mathrm{C}(5)$	106.9 (5)
$\mathrm{N}(1)-\mathrm{U}-\mathrm{N}(2)$	73.0 (2)	$\mathrm{O}(5)-\mathrm{C}(7)-\mathrm{C}(8)$	107.1 (5)
$\mathrm{N}(1)-\mathrm{U}-\mathrm{N}\left(2^{\prime}\right)$	145.9 (2)	$\mathrm{O}(6)-\mathrm{C}(8)-\mathrm{C}(7)$	107.7 (4)
$\mathrm{N}(2)-\mathrm{U}-\mathrm{N}\left(2^{\prime}\right)$	141.0 (2)	$\mathrm{O}(6)-\mathrm{C}(9)-\mathrm{C}(10)$	108.8 (4)
$\mathrm{C}(3)-\mathrm{O}(3)-\mathrm{C}(14)$	112.5 (5)	$\mathrm{O}(7)-\mathrm{C}(10)-\mathrm{C}(9)$	106.9 (4)
$\mathrm{C}(4)-\mathrm{O}(4)-\mathrm{C}(5)$	113.6 (4)	$\mathrm{O}(7)-\mathrm{C}(11)-\mathrm{C}(12)$	$110 \cdot 0$ (4)
$\mathrm{C}(6)-\mathrm{O}(5)-\mathrm{C}(7)$	110.2 (5)	$\mathrm{O}(8)-\mathrm{C}(12)-\mathrm{C}(11)$	107.6 (4)
$\mathrm{C}(8)-\mathrm{O}(6)-\mathrm{C}(9)$	109.7 (4)	$\mathrm{O}(8)-\mathrm{C}(13)-\mathrm{C}(12)$	108.1 (4)
$\mathrm{C}(10)-\mathrm{O}(7)-\mathrm{C}(11)$) 111.1(4)	$\mathrm{O}(3)-\mathrm{C}(14)-\mathrm{C}(13)$	109.6 (4)

Discussion. The atomic parameters are given in Table 1.* The structure is shown in Fig. 1. Table 2 gives bond distances and angles for the complex.
The structure consists of a $\left[\mathrm{UO}_{2}(\mathrm{NCS})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2-}$ complex anion and two [(18 -crown-6) NH_{4}] ${ }^{+}$complex cations. The U atom is located on the 2 axis. The linear $\mathrm{O}=\mathrm{U}=\mathrm{O}$ ion is perpendicular to a nearly planar pentagon formed by four N atoms of the linear thiocyanate ions and one O atom of the water molecule around its equator. The bond distances $\mathrm{U}-\mathrm{N}$ are close to those of Alcock, Roberts \& Brown (1982).

[^1]

Fig. 1. View and atomic numbering of the title compound.

Fig. 2. A view of the unit cell.

In the complex cation the distances from nitrogen atom $\mathrm{N}(3)$ of the ammonium ion to $\mathrm{O}(3), \mathrm{O}(5)$ and $\mathrm{O}(7)$ of the crown ether are $2.94,2.88$ and $2.96 \AA$ respectively. This means that three hydrogen bonds are formed (Behr, Dumas \& Moras, 1982). Further stabilization may arise from ion-dipolar interactions; the distances from $N(3)$ to the other three oxygen atoms $\mathrm{O}(4), \mathrm{O}(6)$ and $\mathrm{O}(8)$ of the crown ether are $3 \cdot 03$, 3.09 and $3.03 \AA$ respectively. The six O atoms are alternately about $0.20 \AA$ above and below their mean plane to form a nearly planar hexagon. The twelve C atoms of the crown ether are nearly located in two planes which are parallel to the oxygen mean plane. The symmetry of the crown ether is close to $D_{3 d}$ as in (18-crown-6) complexes with potassium (Seiler, Dobler \& Dunitz, 1974) and rubidium (Dobler \& Phizackerley, 1974) thiocyanates.

In the crown ether ring, the average bond distance of $\mathrm{C}-\mathrm{C}$ is $1.523 \AA, \mathrm{C}-\mathrm{O}$ is $1.432 \AA$. The average angle of $\mathrm{O}-\mathrm{C}-\mathrm{C}$ is $109 \cdot 3^{\circ}, \mathrm{C}-\mathrm{O}-\mathrm{C}$ is $111 \cdot 2^{\circ}$. The torsion angles about $\mathrm{C}-\mathrm{C}$ bonds are close to 65°. Those about $\mathrm{C}-\mathrm{O}$ bonds are close to 175°. All these data are similar to those published in other papers (Dunitz, Dobler, Seiler \& Phizackerley, 1974).

Complex anions and cations are attracted to each other. Only two NH_{4}^{+}ions are $4.88 \AA$ distant from the
U atom; others are more than $8 \AA$. Thus the complex anion is sandwiched between two NH_{4}^{+}complexes of crown ether. Besides Coulomb forces, there are van der Waals forces formed by some atoms between complex anions and cations. The crystal is stabilized by these forces. Fig. 2 shows a view of the unit cell.

The authors are grateful for the financial support of The Science Fund of The Chinese Academy of Sciences.

References

Alcock, N. M., Roberts, M. M. \& Brown, D. (1982). Acta Cryst. B38, 2870-2872.
Behr, J. P., Dumas, P. \& Moras, D. (1982). J. Am. Chem. Soc. 104, 4540-4543.
Dobler, M. \& Phizackerley, R. P. (1974). Acta Cryst. B30, 2746-2748.
Dunitz, J. D., Dobler, M., Seiler, P. \& Phizackerley, R. P. (1974). Acta Cryst. B30, 2733-2738.

Enraf-Nonius (1983). Structure Determination Package. Version 1.1. Enraf-Nonius, Delft.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Jin, J. N. \& XU, S. C. (1982). Collected Works of the Second National Symposium on Crown Compounds.
Seiler, P., Dobler, M. \& Dunitz, J. D. (1974). Acta Cryst. B30, 2744-2745.

Structure of Diethylammonium Enneaiododibismuthate(III)

By F. Lazarini
Department of Chemistry and Chemical Technology, Edvard Kardelj University of Ljubljana, Murnikova 6, 61000 Ljubljana, Yugoslavia

(Received 3 November 1986; accepted 11 December 1986)

Abstract. $\left[\mathrm{NH}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\right]_{3}\left[\mathrm{Bi}_{2} \mathrm{I}_{9}\right], M_{r}=1782 \cdot 54$, monoclinic, $\quad P 2_{1} / c, \quad a=12.919$ (4),$\quad b=14.718$ (3), $\quad c=$ 19.975 (5) $\AA, \beta=102.04$ (2) $^{\circ}, V=3714.53 \AA^{3}, Z=$ $4, \quad D_{m}=3.15$ (7), $\quad D_{x}=3.187 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=$ $0.71069 \AA, \quad \mu=161.3 \mathrm{~cm}^{-1}, \quad F(000)=3088, \quad T=$ 293 (1) K, $R=0.077$ for 2202 diffractometer data $|I>2 \cdot 5 \sigma(I)|$. The structure consists of $\left[\mathrm{NH}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\right]^{+}$ cations and binuclear $\left[\mathrm{Bi}_{2} \mathrm{I}_{9}\right]^{3-}$ anions composed of face-sharing octahedra with $\mathrm{Bi}-\mathrm{I}$ (terminal) distances in the range between 2.934 (4) and 3.032 (3) \AA and $\mathrm{Bi}-\mathrm{I}$ (bridging) distances in the range between $3 \cdot 169$ (3) and 3.277 (3) \AA. An isomorphous bromine compound also exists.

Introduction. The results of the systematic study of halobismuthates(III) show a great variety of different

0108-2701/87/050875-03\$01.50
halobismuthate(III) anions in the crystalline state, most of them bi- or polynuclear (see Lazarini, 1985, and references cited therein). The investigations were extended to the five existing diethylammonium halobismuthates(III) in order to examine the effect of a flexible cation on the geometry of the hexahalobismuthate(III) groups in these compounds (Lazarini, 1985; Blažič \& Lazarini, 1985; Lazarini, 1987). The structural analysis of the title compound completes these investigations.

Experimental. Crystals of suitable dimensions for X-ray structural analysis were grown by slow evaporation at room temperature from a saturated solution of $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}$ and BiI_{3} (molar ratio 3:2) in n-pro-panol-acetone-40\% HI (90:9:1). D_{m} determined pycnometrically in CCl_{4} at 293 K . A well developed
(c) 1987 International Union of Crystallography

[^0]: * 18 -Crown- $6=1,4,7,10,13,16$-hexaoxacyclooctadecane.

 0108-2701/87/050873-03\$01.50

[^1]: * Lists of anisotropic thermal parameters and structure factors have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 43647 (12 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

